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AbshcL We explore how lhe use of molecular dynamics simulations with relaliveiy small 
systems can be rimed as a Complementary twI to pmvide key input (bridge functions) 
for an amirate integralquation formalism. Our results do indeed show that an efficient 
description of lhe microscopic structure of liquid metals can thus be auained by means 
of inexpensive MD runs with a small number of sample panicles 

1. Introduction 

In a previous work, two of the authors 111 in collaboration with Alvarez and Stell 
studied in detail the behaviour of bridge functions extracted from MD results for 
metallic systems like aluminium and caesium. A rather surprising conclusion drawn 
from that work was the relative insensitivity in the reference hypernetted chain 
equation (RHNC) results in changes in the cutoff distance of the simulated pair 
distribution function (PDF) used when extracting bridge functions from MD data. This 
immediately suggests the possibility of using much smaller sample sizes (in [ l ]  1372 
particles were used) to generate equally useful bridge functions. This idea is certainly 
not new and it has already been exploited to some extent by Linse [2] in the case of 
asymmetric electrolytes. Note that in this type of approach, the simulation sample is 
viewed as the 'reference system', which when utilized in the RHNC scheme will lead 
to results for an infinite, non-periodic and homogeneous fluid, the liquid metal. 

In [l] it was argued that the short- and medium-range structure of the bridge 
function, B ( r ) ,  contains the information required for the description of g ( r )  over a 
wide range of distances, thus explaining the lack of sensitivity to changes in the cutoff 
radius of the simulated PDF (and consequently, one might assume, to changes in the 
sample size), since these affect essentially the long-range behaviour of B(r) .  

In order to fully assess these assumptions, in this work we present a series of 
MD simulations for molten lithium using EO-, 432- and 1458-particle samples. The 
choice of lithium as a system of interest makes the scope of this work twofold. On 
one hand we will test the validity of the above-mentioned assumption and, on the 
other, comparison between our 'experimental' bridge functions and hard-sphere ones, 
in particular the Labik-Malijevslj (LM) formula [3], will explain why in this case 
Percus-Yevick (PY) type approximations for B ( r )  yield accurate results, whereas in 
systems like AI or Cs they fail badly [1,4]. 

The next section is devoted to a description of the model and a brief summary of 
the theory. Finally, in section 3 we discuss the most significant results. 
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2. The potential model. A brief outline of the theory 

The potential model considered here for liquid lithium is due to Rasolt and lhylor 
(RT) 151, and is an interionic potential derived from first principles in the context of 
the nearly-free electron approximation (NFE). Essentially, the system is considered as 
a liquid of positively charged particles which interact via an effective potential 

where 2 is the cation valence, e the electron charge and ijc(q) is the Fourier 
transform of the cationation Coulomb potential given by 

$(q)  = 47r(Ze)Z/$. (2) 

The energy-wavenumber characteristic function F ( q )  contains the electron-mediated 
part of the interaction, including both local and non-local components in the Rasolt- 
'by101 treatment Explicit expressions for this function can be found in the appendix 
of [l], and a complete description of the theory is available in the original works by 
Rasolt and lhylor [5] and Dagens, Rasolt and lhylor (61. Specific potential parameters 
are found in [6] and, as in [l], the potential model M2 is used 161. This approach has 
proven to be efficient in treating group I, I1 and 111 metals, but is too simple to deal 
with transition metals. 

The system considered here has already been studied by Jacucci, Klein and Taylor 
[7l who showed that MD data using the RT potential agree reasonably well with 
experimental structure factors. Foiles, Ashcroft and Reatto [SI later obtained integral- 
equation results (RHNC and crossover approximations) which accurately reproduced 
the simulation data. We have thus a model which can safely be used to account for 
the experimental structural properties of liquid Li and at the same time is suitable 
for an accurate theoretical description with handy numerical procedures. 

Following Jacucci, Klein and 'bylor [7] the density of the system was set to 
0.504 g and the systems equilibrated in our NVE molecular dynamics calculation 
at T = 573 3 K depending on the sample. We have used 250. 432 and 1458 
particles initially on a BCC lattice. This lattice is melted by means of small random 
displacements from the starting configuration, and then between 5000 and loo00 steps 
were allowed for thermalization. Averages were performed along a 25ooO step run. 
A typically time step used is 2.5 x s. This small time step and an appropriate 
choice of the interaction potential cutoff guarantee energy conservation throughout 
the run. By appropriate choice we mean that the cutoff is chosen to be a value 
of r for which the interaction potential vanishes due to the long-range oscillations. 
Throughout this work we have used as unit length the size of the unit cell in solid 
Li at approximately the same density as the liquid, namely a = 3.483 A Our MD 
results are consistent with those found in [7]. 

Now following the procedure suggested in [I], we extend the MD generated pair 
distribution function following the procedure devised by Verlet some time ago [9], i.e. 
we solve the Ornstein-Zernike (02) equation 
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coupled with the closure 

gMD(r) - 1- y ( r )  if P < R, 
-044 i f r > R ,  

c(r)  = (4) 

with y( r)  = g( r) - 1 - c( r) as usual; gMD( r)  denotes the simulated pair distribution 
function. Again we take the cutoff distances R, so that gm( R,) - 1 = 0. Besides, to 
be consistent with the MD we set U( r )  = 0 for T > R,, where R, is the cutoff of the 
interaction potential in the simulation, which not necessarily has to be equal to R, 
in equation (4), and is chosen to fulfill U( R,) = 0 to improve energy conservation 
along the MD Nn. 

The bridge function can now be obtained using the relation 

B(r)  = r(r) - logdr) - 0 4 r )  (5) 

As in [l], B(r)  cannot be reliably determined for small values of P due to the 
statistical uncertainties in the simulated PDF. Finally we solve equation (3) coupled 
with 

c ( r )  = exp[-pU(r) + r(r) - Bzd7-)I- 1 - -dr) (6) 

where B,,(r) is any of the bridge functions obtained from the simulation, or a hard- 
sphere bridge function calculated using the Verlet-Weis parameterization of the hard- 
sphere distribution function [IO] and the Henderson-Gmndke [ll] parameterization 
of y(r). In this latter case, once more as in [l] the hard-sphere diameter is chosen 
to fulIill the optimization condition [12] 

As mentioned before, it is also possible to use the Percus-Yevick based empirical 
formula proposed by LabB and Malijevsw [3] which turns out, in this case, to be a 
suitable choice for the reference bridge function. 

3. Results 

The interaction potential described in the previous section is plotted in figure 1. 
One can easily identify a rather typical metallic potential with the characteristic long- 
range oscillations, without the peculiarities present in the AI potential [I]. The pair 
distribution function obtained for the largest sample (1458 particles) is shown in 
figure 2 together with the results obtained from the RHNC integral equation when the 
MD data for the 1458-particle sample are used to generate the bridge function, using 
the largest possible cutoff in equation (4) ( R ,  = 4.4~) .  As it was the case in [l], when 
this is done the agreement between simulation and theory is complete. In figure 3 we 
have plotted radial distribution functions obtained for various sample sizes focusing 
in the region where discrepancies become more apparent. One readily notices that 
for small T values (first and second coordination shells) discrepancies are negligible 
and for larger values of r the influence of the sample size (and consequently the 
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Figun 1. Effective ion-ion potential for liquid lithium. 

Fiin 2. Pair distribution function for liquid Li from MD simulation and RHNc equation 
using a bridge function extracted from MD data (RHNC-MD). 

interaction potential cutom is more noticeable. Thus, we will then let the MD g(r) 
account for the short-range structure in the closure relation equation (4) and rely on 
the MsA-Iiie approach implicit in equation (4) for the rest of interaction range. 

In figure 4(u) several B( r )  functions are plotted for a variety of sample sizes using 
a PDF cutoff which includes first and second coordination shells ( R ,  = 1.82a). Results 
for the largest cutoff avaiIable (R, = 4.441) are also shown. We see that the curves 
exhibit the same qualitative behaviour, with the largest deviations corresponding to the 
smallest sample. The flat maximum present around r = 3.6a when the largest cutoff 
is used vanishes for smaller cutoffs, i.e. is not reproduced by the MSA-lie relation (4). 
However the maximum around P = 2a is present in all curves. (Use of a hypernettsd 
chain-type approximation in the extension of g(r) would predict a B(r)  vanishing 
at r = R,.) In figure 4(b) we present the Verlet-Weis-Grundke-Henderson bridge 
function (vw) for hard spheres together with the Labik-Malijevskf approximation, 
both obtained after optimization of the RHNc equation using equation (7). Contrary 
to what happened in the Al and Cs cases studied in [l], here the ‘experimental’ 
bridge functions do not reach appreciably negative values. This might explain why in 
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Figure 3. Sample size dependence in the radial distribution function for liquid Li. 
Deviations for lower r values are negligible. 
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this case it is possible to perform the optimization procedure using the LM formula 
since, being PY-related, it remains always positive. For Al and Cs the optimization 
procedure in this latter case failed, whereas for the vw bridge function it did not pose 
particular problems. The qualitative behaviour of the hard-sphere functions (positions 
of maxima and minima) agrees quite well with the extracted B(r). 

Now in figure 5 we analyse in detail the influence of the sample size in the 
results of g(r) generated by equations (3) and (6) using the bridge function shown 
in figure 4(a). For the sake of clarity we have only plotted the most extreme cases, 
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Figure 5. Pair dKtribution function for mollen Jitrom simulalion versus RHNGMD mu1ls 
using some of the bridge functions depicted in figure 4(0). 
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Flgure 6. Fourier transform of the total correlation function, h(k) t” RHNGMD 
results, (bridge tunctions from 1458- and 2.50-particle sampler denoted by solid and 
dashed l i n s  respeclively) and by Verletk exlension of lhe MD resulls tor a 14Y3-parIicle 
sample (dashdotted line). 

i.e. 1458-particle sample with R, = 4.44 and 250 particles with Rc = 1.82 Other 
results are hardly distinguishable from the first. MD data are plotted for the largest 
sample. We can appreciate that the discrepancies for the small sample results are 
slim, even in the long-range detail. One might ask what would be the effect of these 
tiny departures on a quantity of great interest, i.e. the structure factor. The answer 
to this question can be seen in figure 6, where we have plotted h(k) = [S(k) - l]/p 
computed from the extracted B(r) as in figure 4 (solid and dashed line correspond 
to using bridge functions extracted from 1458- and 250-particle samples respectively) 
and also we include the h(k) resulting from Verlet’s extension procedure (dash-dotted 
line). It is readily apparent that discrepancies in the structure factors are altogether 
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Figure 7. Radial dislribulion funclions compuled Irom lhe optimized RHNc equation 
using Verlel-Weis and LabkMalijewk~ hard-sphere bridge funclions (ORHNGW and 
ORHNGLM on the figure respecliveiy) compared with MD mulls. 

negligible, as is consistent with the results found for pair distribution functions. 
Finally, the results of the RHNC when hard-sphere reference bridge functions are 

used with optimization of the hard sphere diameter can be found in figure 5. As 
pointed out by Foiles, Ashcroft and Reatto [SI the agreement is excellent, aside 
from a small deviation in the second maximum (which appears to be characteristic 
of the use of this type of bridge functions [l]). The success of these theories can 
be understood in terms of the remarkable qualitative similarities found between the 
hard-sphere bridge functions and those extracted from MD. 

We conclude thus that the combined use of MD simulation of relatively small 
samples with RHNC-type equations yields a powerful tool in the determination of 
liquid metal microscopic structures. Note in this respect that the CPU time required 
for the 1458-particle MD amounts to 24 hours on a VAX-9210 whereas a 250-particle 
sample needs approximately one hour. The solution of the integral equations involved 
in extracting the bridge function and generating a new g(r) barely take a couple of 
minutes of CPU time. And finally, as a last ObSeNatiOn we should stress that we 
appreciate again a considerable variability in the shape of bridge functions depending 
on the interaction potential as was the case when we considered potential models for 
Al and Cs. 
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